365平台

福建物构所等高面积体积能量密度锂硫电池研究
发布时间:2021-02-21 17:19    文章作者:365平台

  作为国家在科学技术方面的最高学术机构和全国自然科学与高新技术的综合研究与发展中心,建院以来,中国科学院时刻牢记使命,与科学共进,与祖国同行,以国家富强、人民幸福为己任,人才辈出,硕果累累,为我国科技进步、经济社会发展和国家安全做出了不可替代的重要贡献。更多简介 +

  中国科学技术大学(简称“中科大”)于1958年由中国科学院创建于北京,1970年学校迁至安徽省合肥市。中科大坚持“全院办校、所系结合”的办学方针,是一所以前沿科学和高新技术为主、兼有特色管理与人文学科的研究型大学。

  中国科学院大学(简称“国科大”)始建于1978年,其前身为中国科学院研究生院,2012年更名为中国科学院大学。国科大实行“科教融合”的办学体制,与中国科学院直属研究机构在管理体制、师资队伍、培养体系、科研工作等方面共有、共治、共享、共赢,是一所以研究生教育为主的独具特色的研究型大学。

  上海科技大学(简称“上科大”),由上海市人民政府与中国科学院共同举办、共同建设,2013年经教育部正式批准。上科大秉持“服务国家发展战略,培养创新创业人才”的办学方针,实现科技与教育、科教与产业、科教与创业的融合,是一所小规模、高水平、国际化的研究型、创新型大学。

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年招收攻读博士学位研究生报名公告

  中国科学院紫金山天文台(中国科大天文与空间科学学院)2021年接收“推免生”章程

  2020年南昌大学-中国科学院稀土研究院“稀土专项”联合培养博士研究生“申请-考核”制招生公告

  由于正极材料硫具有高理论容量、低成本和环境友好等优势,锂硫(Li-S)电池在下一代储能系统中表现出很大的应用前景。采用传统浆料涂布技术制造高硫负载正极材料一般通过设计三维导电网络以解决在高硫含量条件下导电性问题,将纳米材料单元组装成微米尺寸的二级结构,构筑致密且高振实密度的正极,以增加颗粒堆积并降低空隙度。上述策略在一定程度上改善了面积硫负载量和相应的面积容量,但是大多数报道通常使用导电多孔纳米碳作为硫载体,然而由于碳材料的低极性和低的振实密度,使得体系在高硫负载下的体积能量密度和循环性能并不理想。因此,开发用于高面积和体积容量Li-S电池的高振实密度、极性和导电性的新型碳替代物非常重要。

  在国家自然科学基金(21601191,21673241, 21471151))、中国科学院战略性先导科技专项(XDB20000000)、福建省自然基金(2018J01030)的资助下,中科院福建物质结构研究所结构化学国家重点实验室研究员王瑞虎和温州大学教授杨植合作报道了未加入任何碳导电添加剂的花状多孔Ti3C2Tx(FLPT)基正极系统,所得FLPT-S电极具有10.04 mAh·cm-2的高面积容量和2009 mAh·cm-3的超高体积容量。此外,非原位电子顺磁共振和紫外-可见光谱证明,FLPT能够在循环过程中实现S62-阴离子与S3·-自由基之间的快速动态平衡,从而促进硫物种的氧化还原反应。该研究为不含导电碳添加剂的MXene基高能量密度Li-S电池的设计提供了灵感。该方法有望扩展到其他高性能电极材料,如锂离子电池和超级电容器,从而为各种高性能储能系统的发展带来巨大希望。上述工作发表在ACS Nano(Synchronous Gains of Areal and Volumetric Capacities in Lithium-Sulfur Batteries Promised by Flower-like Porous Ti3C2TxMatrix,ACS Nano,2019,13, 3404-3412)。论文的第一作者为助理研究员肖助兵。

  此前,肖助兵等以提高锂硫电池面积容量和体积容量为研究目标,先后采用高导电过渡金属硫化物(TiS2和NbS2)作为添加剂应用在锂硫电池正极以提高电池面积容量和大电流放电容量(Energy Storage Mater.2018,12, 252-259;ACS Nano2017,11, 8488-8498;)。并采用水热法得到的还原氧化石墨烯/硫化钒(rGO/VS2)复合材料应用于三元硫正极体系中,制备得到具有密堆积三明治结构的rGO/VS2-S正极材料,实现了体积能量密度的大幅提升(Adv. Energy Mater.2018, 7, 1702337)。此外,采用海藻酸钠诱导的化学键裁剪策略,制备了Ti3C2Tx纳米片负载的纳米点复合材料,在硫面密度为1.8 mg cm-2时几乎表现出理论放电行为(ACS Nano,2019,13,3608-3617)。

  由于正极材料硫具有高理论容量、低成本和环境友好等优势,锂硫(Li-S)电池在下一代储能系统中表现出很大的应用前景。采用传统浆料涂布技术制造高硫负载正极材料一般通过设计三维导电网络以解决在高硫含量条件下导电性问题,将纳米材料单元组装成微米尺寸的二级结构,构筑致密且高振实密度的正极,以增加颗粒堆积并降低空隙度。上述策略在一定程度上改善了面积硫负载量和相应的面积容量,但是大多数报道通常使用导电多孔纳米碳作为硫载体,然而由于碳材料的低极性和低的振实密度,使得体系在高硫负载下的体积能量密度和循环性能并不理想。因此,开发用于高面积和体积容量Li-S电池的高振实密度、极性和导电性的新型碳替代物非常重要。

  在国家自然科学基金(21601191,21673241, 21471151))、中国科学院战略性先导科技专项(XDB20000000)、福建省自然基金(2018J01030)的资助下,中科院福建物质结构研究所结构化学国家重点实验室研究员王瑞虎和温州大学教授杨植合作报道了未加入任何碳导电添加剂的花状多孔Ti3C2Tx(FLPT)基正极系统,所得FLPT-S电极具有10.04 mAh·cm-2的高面积容量和2009 mAh·cm-3的超高体积容量。此外,非原位电子顺磁共振和紫外-可见光谱证明,FLPT能够在循环过程中实现S62-阴离子与S3·-自由基之间的快速动态平衡,从而促进硫物种的氧化还原反应。该研究为不含导电碳添加剂的MXene基高能量密度Li-S电池的设计提供了灵感。该方法有望扩展到其他高性能电极材料,如锂离子电池和超级电容器,从而为各种高性能储能系统的发展带来巨大希望。上述工作发表在ACS Nano(Synchronous Gains of Areal and Volumetric Capacities in Lithium-Sulfur Batteries Promised by Flower-like Porous Ti3C2Tx Matrix, ACS Nano, 2019, 13, 3404-3412)。论文的第一作者为助理研究员肖助兵。

  此前,肖助兵等以提高锂硫电池面积容量和体积容量为研究目标,先后采用高导电过渡金属硫化物(TiS2和NbS2)作为添加剂应用在锂硫电池正极以提高电池面积容量和大电流放电容量(Energy Storage Mater. 2018, 12, 252-259;ACS Nano 2017, 11, 8488-8498;)。并采用水热法得到的还原氧化石墨烯/硫化钒(rGO/VS2)复合材料应用于三元硫正极体系中,制备得到具有密堆积三明治结构的rGO/VS2-S正极材料,实现了体积能量密度的大幅提升(Adv. Energy Mater. 2018, 7, 1702337)。此外,采用海藻酸钠诱导的化学键裁剪策略,制备了Ti3C2Tx纳米片负载的纳米点复合材料,在硫面密度为1.8 mg cm-2时几乎表现出理论放电行为(ACS Nano, 2019, 13, 3608-3617)。


365平台

© 365平台 版权所有 All rights reserved.
手机:13346261222 邮箱:1797060463@qq.com 技术支持: 网站地图